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ABSTRACT

A fully Sinc-Galerkin method in both space and time is presented for fourth-order time-

dependent partial differential equations with fixed and cantilever boundary conditions. The

sinc discretizations for the second-order temporal problem and the fourth-order spatial prob-

lems are presented. Alternate formulations for variable parameter fourth-order problems are

given which prove to be especially useful when applying the forward techniques of this

paper to parameter recovery problems. The discrete system which corresponds to the time-

dependent partial differential equations of interest are then formulated. Computational issues

are discussed and a robust and efficient algorithm for solving the resulting matrix system is

outlined. Numerical results which highlight the method are given for problems with both

analytic and singular solutions as well as fixed and cantilever boundary conditions.

1This research was supported by the National Aeronautics and Space Administration under NASA Con-
tract No. NASI-18805 while the author was in residence at the Institute for Computer Applications in
Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.
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1 Introduction

The Sinc-Galerkin method for partial differential equations (PDE's) has previously been

developed for the model elliptic problem in two and three dimensions [1, 21, the parabolic

problem in one and two dimensions [3, 2], and the second-order hyperbolic problem in one

dimension [4]. The present work extends the method to fourth-order time-dependent prob-

lems with various common boundary conditions. This extension is important for the very

practical reason that the numerical solution of problems in this class is necessary in ap-

plications ranging from the control of large flexible space structures to the development of

robotics designs [5, 6, 7].

For clarity of development, the method will be presented for the linear fourth-order time-

dependent problems
rU( ' 2U.(X t) + a2EI(x) a2(X$ t) = X fzt), 0 < X < 1 t > 0

_0
2u 192 ( 19X2

u(Ot)=u(1,t)=O, t>O (1.1)
au a u
TX(0,t) t) (,0=o0, t>o0

=t 0) 0, 0<X<

and

£u(,,t) = f(x,t), O < X < 1 t > O

u(O)ut) = "(t)= -( ) , 0t) = Y(t), t > 0 (1.2)
au ~ ( '2u) (1, t) = (t), t> 0

TX('t O) O, TO, l.
U(X' ) o X ) = 0 , <1

These formulations are generalizations of the equations which arise when using the Euler-

Bernoulli theory to model beams with flexural rigidity EI(x) and fixed and cantilevered

ends, respectively. The general ;(t) and 3(t) in (1.2) allow for the inclusion of boundary

controllers. For ease of presentation, the boundary conditions in (1.1) and (1.2) will respec-

tively be referred to as fixed and cantilever conditions throughout the paper. It is noted that



the methods of this work are easily extended to problems with simple and free boundary

conditions with further details given in [8].

The construction of an approximate solution to problems of the form (1.1) or (1.2) com-

monly begins with a Galerkin discretization of the spatial variable with time-dependent

coefficients. This yields a system of ordinary differential equations which is solved via dif-

ferencing techinques. Due to stability constraints on the discrete evolution operator, low

order methods with small time steps are often required to obtain accurate approximations.

In contrast, the method of this work implements a Galerkin scheme in time as well as space.

Because the basis functions are tensor products of sinc functions composed with suitable

conformal maps, the method has the inherent advantage that the study of error analysis and

matrix structure begins at the level of an ordinary differential equation.

The fully Sinc-Galerkin method in space and time has many other salient features due

both to the properties of the basis functions and to the manner in which the problem is

discretized. First, the judicious choice of a conformal map provides approximate solutions

to (1.1) and (1.2) which are valid on the infinite time interval rather than only on a trun-

cated time domain. Furthermore, the optimal exponential convergence rate is maintained

even in the presence of boundary singularities. Finally, the discrete system requires no nu-

merical integrations to fill either the coefficient matrix or the right-hand side vector. All

three features prove to be advantageous when solving both forward and inverse fourth-order

problems. A drawback to the method is that it produces a full system in contrast to the

banded matrices which are associated with finite difference and finite element methods. In

part, the exponential convergence rate offsets this disadvantage.

The foundations of the Sinc-Galerkin method are described in Section 2. The fundamental

quadrature rule is given, and the exponential convergence rate of this method is stated. A

thorough review of sinc function properties can be found in [91 and [10].

In the next section, the discretization of the second-order temporal and fourth-order spa-

tial operators is outlined. Two schemes for discretizing EI(x) are presented. These two

schemes are motivated on the one hand by the forward problem and on the other hand by

the inverse problem involving the recovery of EI(x), given sampled data. In the first, EI(x)

is differentiated directly, whereas in the second (as motivated by the parameter recovery
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problem) EI(x) is replaced by a finite dimensional expansion Elm. before differentiation.

Attention is focussed on preserving the method's exponential convergence rate while dis-

cretizing EI(x) and adapting to varying boundary conditions.

In Section 4, the one-dimensional results from the previous section are combined to yield

methods which very accurately approximate the solutions to the fourth-order time-dependent

problems (1.1) and (1.2). Two equivalent formulations for the resulting discrete system are

presented and a very robust and accurate solution algorithm is outlined.

Numerical results are presented in the fifth section. Of the many examples tested, those

dipcussed in this section best exhibit the features necessary for the practical implementation

of the Sinc- Galerkin method. The first and second examples illustrate the method as applied

to problems with fixed boundary conditons while the thi,'d and fourth examples have can-

tilever boundary conditions. The first and last examples have analytic solutions, the second

example has an algebraic singularity, and the third example contains a logarithmic singular-

ity. The numerical results demonstrate that the exponential convergence rate is maintained

in all four cases.

2 Sinc Function Properties

For the Sinc-Galerkin method, the basis functions are derived from the Whittaker cardinal

(sinc) function

sinc(x)= sin(7rx) -oo < X < oo
7WX

and its translates
S(k, h)(x) -= sinc xZ -kh-  h h>0.

For h* = , three adjacent members of this sinc family (S(k, h*)(x), k = -1, 0, 1) are shown

in Figure 1.

• V 'lty Codes
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Figure 1. Three Adjacent Members (S(k, h)(r), k 1, 0, 1, h of the Translated Sinc

Family.

To construct basis functions on the intervals (0,1) and (0, oo), respectively, consider the

conformal maps

O(z) =n(G ZZ) (2.1)

and

T(w) =ln(w). (2.2)

The map 0 carries the eye-shaped region

DE = z x z+ iy arg (i z <d <

onto the infinite strip

Dw {w = t + i~s: Iarg(w)I < d < 7

onto the strip DS. These regions are depicted in Figure 2.
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Figure 2. The Domains Ds, DE, and Dw.

The sinc gridpoints zk E (0,1) in Dw will be denoted xk since they are real. Similarly, the

gridpoints wA E (0, oo) in D. will be denoted ti. Both are inverse images of the equispaced

grid in Ds; that is
ekh

= &-(kh) _ 1+ ekh

and

t, = T-(kh) ekh.

To simplify notation throughout the remainder of this section, the pairs 4, DR and T, Dw

are referred to generically as X, D. It is understood that the subsequent definition and

theorems hold in either setting. Furthermore, the inverse of X is denoted by '.

The important class of functions for sinc interpolation and quadrature is denoted B(D)

and defined next.



Definition 2.1. Let B(D) be the class of functions F which are analytic in D, satisfy

f -4) IF (z)dzl - 4 0, t -- ± 00

where L {is: IsI < d < 1}, and on the boundary of D (denoted OD) satisfy

N(F) ]L IF(z)dzl <00.

The following theorem for functions in B(D) is found in [11].

Theorem 2.1. Let r be (0,1) or (0, oo) when X - 0 or T, respectively. If F C B(D) and

zj = 0(jh) = X-(jh),j = 0, ±1, ±2,..., then for h > 0 sufficiently small

F(z)dz - h E3 FLz) < Ke 2 wd/h. (2.3)

Theorem 2.1 illustrates the exponential convergence rate which is a trademark of sinc meth-

ods. There is a common occasion when it is possible to evaluate the infinite series appearing

in (2.3), namely when integrating against S(k, h) o X. In general, however, the series must

be truncated. With additional hypotheses, it is proven in [91 and [12] that the truncation

need not be at the expense of the exponential convergence.

Theorem 2.2. Assume F E B(D) and that there exist positive constants K, a and # such

that
'FI) K exp(-ctjX(7-)j), 7- E 7P((-Oo,0))

-< K exp(-fl3X(r)), -r E 0([0,00)).

Then for h sufficiently small

N F(z,) i 2 rd/h K L~ecMh K -ONh (5F(z) dz-hZ x'() a-  + + -e "rj=-M OtZj

Theorems 2.1 and 2.2 are used to establish a uniform error bound when building an

approximate solution to an ordinary differential equation (ODE). It should be noted that
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the nature of the class B(D) guarantees that the exponential convergence rate holds for

many differential equations with singular solutions; that is, problems where the solution has

an unbounded derivative on the boundary. By applying the scheme to select second- and

fourth-order ODE's, one can derive the fundamental matrices comprising the discrete sinc

system for the fourth-order time-dependent problems of interest.

3 Sinc-Galerkin Systems for ODE's

In this section, the sinc discretizations will be catalogued for the second-order temporal

problem and two different fourth-order spatial problems distinguished by their boundary

conditions. Alternate formulations for the variable-parameter fourth-order problems will

also be given which prove to be especially useful when applying the forward techniques

outlined in this paper to parameter recovery problems.

In order to construct the discrete Sinc-Galerkin system for either the temporal or spatial

problems, the following identities are needed. Let

60) -[S(p,h)ox(z)I = (3.1)

(0) 1 01 X~~ iz (3.1)
"=" O, ip,

6(2) ~ ~ ~ ~ ~ 0 h2 [A(: ~) P{,(336 ) - S (p, h) o X() = (3.2)

6(j) EE h 2ds(p, h) o X() 3' (3.3)
= (-i( 1 " _ p) P,

3 3-- d 3 0, '

P h3  ) x() , = (- )- [ r2(i- p)21', i j p,

(i- p)3-
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and

7r 
4

6(4) h4  d 4S(P h) o()
(i - p)4[6 - 7r'(i - p)'], i p, (3

denote the evaluation at the gridpoint z, of the sinc-map compositions and their derivatives

with respect to the map X.

8.1. The Spatial Problem: Fixed Boundary Conditions

In [13], a thorough analysis of the Sinc-Galerkin method is given for linear fourth-order

ODE's with fixed boundary conditions. For purposes of constructing the sinc discretization

for (1.1), it suffices to review that procedure for

Lu(x) - (EI(x)u"(x))" = f(x), 0 < x < 1

U(0) =U(1) =0 (3.6)

u'(0) = u'(1) = 0.

Note that the interval (0,1) is for convenience only; adapting the map 0 (see (2.1)) generalizes

the method to any finite interval (a, b).

To define the Sinc-Galerkin approximation to (3.6), select the basis {Si},'. where

Si(x) - S(i, h.) o O(x) and take the approximate solution to be

No
u = .( uS,(x), m, = M, + N, + 1. (3.7)

The unknown coefficients {ui} in (3.7) are determined by orthogonalizing the residual
Lu,,. - f with respect to the functions {Sp}N*-.-- ~~P MSr_., This yields the discrete system

(Lum - f,Sp) = 0

for p = -M, ... , N. The weighted inner product (.,.) is taken to beI
(F, G) = j F(x)G(x)w(x) dx (3.8)

where

w(X) = (3,(-)).. (3.9)
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For a further discussion concerning the choice of weight, see [131.

Before invoking the quadrature rules, integration by parts is used to transfer the differ-

entiation of u onto Srw, thus yielding the system

j u(x)[EI(x)(Sp(x)w(x))""dx = j f(x)S, ()w(x)dx (3.10)

for p = -,... , N_. With the weight choice (3.9), the boundary terms

{(EIu")'(Spw) - (EIu")(Spw)' + u'(EI(Spw)')' - u(EI(Spw)')"}(x) '°  (3.11)

vanish for essentially all problems of interest.

Two approaches are distinguished by the treatment of the first integral in (3.10). In the

traditional scheme, EI(x) is differentiated directly and the resulting integrals are approx-

imated via sinc quadrature rules. This scheme is direct and suitable for a large class of

forward problems. The second, alternative, approach is motivated by the parameter recov-

ery problem and differs from the first in that EI(x) is replaced by a sinc expansion, El,,.,

before quadrature is applied. Both approaches then proceed in the same manner whereby

the system is expanded and the resulting integrals are evaluated via Theorem 2.2, or when

possible, Theorem 2.1.

The careful choice of the decay parameters a and / in (2.4) provides a means of balancing

the asymptotic errors resulting from the quadrature and hence minimizes the system size.

With regard to (2.4), the condition

12 [) 1)
guarantees the decay needed to truncate the infinite quadrature rule. A less general but

more convenient assumption than (3.12) is

IEI(x)u(x) Kx +I(1 - x)0+1. (3.13)

With a and / specified and M. chosen, the parameter selections

h- M (3.14)
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and

N. = MM. +1 (3.15)

balance the asymptotic quadrature errors to at least O(e(- wdaM) ). This rate results from

the presence of a sinc function in the integral. In the above, ['l denotes the greatest integer

function. Note that if ZM is an integer, (3.15) can be replaced by the selecticn IV. = 2M.

The discrete system for (3.6), using the traditional approach, can then be formulated

as follows. Let (), = 0, 1,2,3,4 denote the m, x m. matrices whose pi-th entry is 6g)

from (3.1)- (3.5) and let D9(77) be the diagonal matrix with entries 77(XM.),. . (XN.).

The vector of unknowns il= [U-M.UN.]T is then related to the known vector f--

[f(X-M.)," ,f(XNo)] T by
A.U Ef )((O')-T")f (3.16)

where

A -~a4 +P )(a 3 ) ± Ej()(a2 ) +iI()V(ai) +I(o)-D(ao)I (3.17)

The functions aj(x),I = 0, 1,2,3,4 are given by

(EIw)"' 2 (EI'w)" (EI"w)" 
(

a0 2 ,€ + €, ,(3.18)

, 4(EIw)"' + 6(EIw)" - + 4(EIwj-O- + EIw..
(3.19)

-6(EI'w)" - 6(EI'w)'- - 2E'w-1 + EI"(w) + 2(EI"w)',

a2 = 6(EIw)"0' + 12(EIw)'¢" + 4EIw"' + 3(EIw)' (0 1)2

(3.20)

-6(EI'w)'€ - 6EIw" + EI"w¢l,

a3 = 4(EIw)'(O')2 + 6EIw'4" - 2EI'w(') 2  (3.21)

and

a4 = EIw(0')3 . (3.22)

Further details concerning the derivation of the system (3.16) and a thorough spectral anal-

ysis of the component matrices can be found in [13].
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As mentioned previously, the treatment of the first integral in (3.10) yields various pertur-

bations of the method which are advantageous in certain applications. One such application

is the parameter recovery problem where an integral part of most numerical schemes for

solving that problem is an accurate forward solver. With this in mind, the alternative ap-

proach mentioned above is implemented wherein the term EI(x) in (3.10) is expanded as a

linear combination of weighted sinc functions with four Hermite-like algebraic ternis. These

terms are added to accommodate the potentially nonzero function and derivative values of

EI at x = 0 and x = 1. Specifically, this parameter basis is taken to be {'k}=-M. with

b_ ,.(X), k =-M

b_M.+l(x), k -M. + 1

=k(X) vE(x)Sk(x), -M + 2 < k < N - 2 (3.23)

bN..l(x), k = Nx - 1

bN, (x), k = NT.

Here Sk(X) = S(k,h.) o O(x) and the basis weight vE is taken to be

VE(X) = w(X) -- [X(1 - X)]I. (3.24)

The algebraic boundary basis functions are given by

bM.+l(x) (1 - x)2 [2x 1,

bN._,(X) X 2 [2(1 - x) + 1],

b M.(X) = z(l - X),

and

bN.(X) = -2(i - X).

The finite dimensional approximation of El then takes the form

M.
El,,,.(xr)= ) CkV'k(r). (3.25)

k= - M°

11



The number of basis functions used in the expansion is chosen so as to guarantee a square

coefficient matrix. This is done to simplify the implementation of the method when applied

to the PDE (1.1) of interest.

A quick note should be made concerning the choice of basis and the manner of expand-

ing Elm. The two derivative-interpolating boundary basis functions are added so that this

expansion of Elm. is the same as that used with cantilever or free boundary conditions. The

choice of (3.24) for basis weight is certainly sufficient and proves to be beneficial when in-

corporating this forward scheme into a numerical method for solving the parameter recovery

problem.

The expansion (3.25) is substituted into (3.10) and the resulting integrals are evaluated

via Theorem 2.2 or Theorem 2.1 when possible. The decay condition (2.4) equates to the

condition

IeFI(x)u(x)l k { 2) (3.26)(1- +2 X 1,1
where the "homogeneous" part of El is

£.6(x) = EI(x) - EI(O)bM.+l(x)- EI(1)bN._(X) - EI'(O)b_M.(x) - EI'(1)bN.(x). (3.27)

The arguments leading to this condition are analogous to those presented in the second-order

case as described in [14]. Again, this may be replaced by the more stringent requirement

IEt(x)u(x)I < Kx'+1(1 - x)0+ 1 .

As before, the asymptotic errors are balanced by choosing h. and N, as specified in (3.14)

and (3.15).

With il and f defined as before and EI expanded, the system for (3.6) using this alter-

native approach can be written as

A.,9 = D((O')-I)f (3.28)

where

A_ = [ 2)V( ( 2)) + 24()D(3Ef(,)) + 4(4)D(-(o))]. (3.29)

12



The notation V( s(t)), I = 0, 1, 2 denotes the diagonal matrices containing the components

of the vectors

- ) =( I = 0, 1,2 (3.30)

where C' = [cM.,"" ,CN.]. The matrices (Qj = 2,3,4 and j('),I = 0, 1, 2 are defined

componentwise by 1

[ =()] -i (Spw)(')(xi) (3.31)

and

[qI(l)],k = i/4')(x1 ). (3.32)

The notation on the right-hand sides of (3.31) and (3.32) indicates the j-th and t-th deriva-

tives, respectively.

To illustrate the dependence of (I),j = 2, 3,4 and xk('),l = 0, 1,2 on previously defined

matrices, the respective expansions are listed beL i. The diagonal matrices E) and the

matrices I(),t = 0, 1,2, 3,4 have sizes consistent with the following range of the indices i,p

and k (-M. i < N., -M. < p 5 N., -M. + 2 < k < N. - 2). From (3.31) it follows that

(2)= 1 i(2)V(woI) + I I()V(2w ') + I(°)D(w"), (3.33)

,(3)- 1(w3)E(W(01)2) ± -i')v(3w'O,' + 3wO")
h__ 1 h2 (3.34)

+110I)/( 3w" + 3w', + + l(°kV

and

,t(4) - ()- (W(01)3) ±. 1 (3)1V (4w'( 01)2 + 6WO'k")

±-I( 2 )D W' + 12w'O" + 4w4" + 3w - 1
h,, 0. ,(3.35)

+-11)V 4w' + 6w", + 4w-' + w--...

+ I(° \ J

For t = 0, 1,2 the m. x m. matrices in (3.32) are given by

-1 [i) : bI t ML1) (3.36)

13



where bl)= [b)(x_ ., b[0(xN.)]T for k = -M., -M. + 1, N. - 1, and N.. Again, the

superscript I indicates the t-th derivative. The m. x (m. - 4) matrices B( ') are

B( ) = (VE)I(), (3.37)

= -- D(vE0')I() + V(VE)I(o) (3.38)

and
B~2~- jD (V_(01)2) J(2) - (vEo" + 2v'qS')IC') ± V(v")I(O).(3)

The negative signs that appear in the definitions of B(' ) and B (2 ) result from the transposing

of IP). Again, it is noted that in (3.37) - (3.39), the m, x (m, - 4) matrices ('), t = 0, 1, 2

have components 6( ) as defined in (3.1) - (3.3).

Thus, the fourth-order spatial problem (3.6) can be solved in a variety of ways using

the Sinc-Galerkin method. For standard forward problems, the system (3.16) is often the

most convenient to formulate and solve. If the forward solver is part of a numerical routine

for solving the parameter recovery problem, then (3.28) is more useful since EI is replaced

by its finite dimensional approximation. Both approaches yield solutions u,,,. which are

exponentially convergent approximations to the solution u of (3.6).

3.2. The Spatial Problem: Cantilever Boundary Conditions

A second set of fourth-order boundary conditions arise when modeling beams that are

fixed at one end and free at the other. To extend the Sinc-Galerkin method to problems

with these cantilever boundary conditions, consider the ODE

Lu(x) = (EI(x)u"(x))" = f(x), 0 < x < 1

u(O) = -, (EIu")(1) = (3.40)

u'(0) = -, (EIu")'(1) = 6.

A Sinc-Galerkin method to approximate the solution of (3.40) can be developed as follows.

14



Define the set of basis functions ij}N e by.'ii=- M.-4 by

B-M_ 4(), i -- -M. - 4

B-M. 3 (), -M - 3

BM.o. 2 (X), i =-M - 2

B-M.-(x), i -M. - 1

C1(x) = v(x)S,(x), -M. < i < N. (3.41)

BN.+I(X), i= N. + 1

BN.+2 (X), i = . + 2

BN.+3 (X), i N. + 3

BNo+4(X),i = N. + 4.

Here Si(x) S(i, h) o O(x) and the basis weight v(x) is taken to be

v(X) = [X(1 - X)]3 .  (3.42)

The boundary basis functions are

BMoI(x) = (1 - x)4 [20X3 + 1OX 2 + 4x + 1],

BN.+,(x) = x4 [20(1 - X)3 + 10(1 - x) 2 + 4(1 - x) + 1],

BM._() - X(1 - x) 4 [lOX2 + 4x + 11,

B N.+(X) = -X 4 ( - X)[10(1 - x)2 + 4(1 - x) + 1],

B_. 2(l _ X)4 
1 ( -

and
1 4BN.+(X) = -- x (1 - ) +

15
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A brief note concerning the choice of basis is in order at this point. First, since

d(' [S(i, h.) o O(x)] , I = 1,2,..., are undefined at x = 0 and x = 1, some basis modifi-

cations must be made when solving problems with nonzero boundary conditions (see also

the definition of Ok in (3.23)). It is tempting to use fewer algebraic boundary basis functions

and the basis weight

v(x) = x(1 -

but in many problems this results in nonzero boundary terms when integrating by parts. By

using the basis weight v(X) = [X(1 - x)] 3 and a full complement of algebraic terms, this pitfall

can be avoided. Furthermore, the basis {(j} as defined in (3.41) can be used for problems

with free boundary conditions, thus providing consistency to the method.

The approximate solution is then defined to be

,..(X) = _C-M1.-1(X) + j_.M.-2(x) + YCN.+3(x) + 6CN.+4(X)

+U-M.-3-M.-3() + UM.4(.M.4(X) + UN.+I(N.+(X)

(3.43)

UN.+2(CN.+2(-T)

No

+ E UtC,(X)
i=-Mx

where U , and are known and the coefficients {u} are unknown. The quantities

1

and 1 E- (1-EE(1))
EI(1) [EI(1)]2"

are well-defined since EI(x) is assumed positive on [0, 1]. Note that with the definition (3.41)

for the basis {Ct},um.(x) satisfies the boundary conditions; that is,

uM.(O) = ", (Etu.)(1) =

M.(O)= T, (EIu".)'(1) =.

The m. + 4 unknown coefficients in (3.43) are determined by orthogonalizing the residual

with respect to the set of sinc functions {SP}N/ +2 This Petrov-Galerkin approach is in
P=-M.- T"

16



contrast to those Galerkin methods in which the residual is orthognalized with respect to

the basis and is done to take advantage of the exponential accuracy of point evaluation in

the quadratures. This yields the discrete system

(Lu,,,. - f, Sp) = 0 (3.44)

for p = -M - 2,. , N+ + 2. The inner product (.,.) is that defined in (3.8) with the weight

in this case taken to be

w(x) 1. (3.45)

The difference between the weight function in (3.45) and that given in (3.9) is due to the

presence of the basis weight v(x) in the definition of the basis {¢ }. If the definition

N,

Uh(X) = 1: uici(x)
i=- M.

is made, then (3.41) and (3.44) can be combined to yield

(LBm._3 , Sp)UM._ 3 + (LBM.o4 , Sp)UM._4 + (LBN.+I, Sp)uN.+l

+(LBN.+ 2 , Sp)UN.+ 2 + (Luh, Sp) (3.46)

= (7,SP)

forp= -M -2,...,N±+2 and

7(x)= f(x) - -&LBM._.-(x) - 7LBM._2 (X) - 'LBN.+ 3 (X) - SLBN.+4 (x).

Integration by parts is applied to (Luh, Sp) thus yielding the integral

I uh()[EI(x)(S,(x)w())"]"dx (3.47)

(compare to (3.10)). The weight choice (3.45) is sufficient for guaranteeing that the boundary

term (3.11) vanishes with u replaced by Uh. As in Section 3.1 there are two approaches here.

In the traditional approach EI(x) is differentiated directly and in the alternative approach

EI is simply replaced by the finite dimensional approximate EIm.. The remaining inner

products in (3.46) are evaluated directly via Theorem 2.1.
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Proceeding with the first approach, as indicated by (3.12), the choice of weight w directly

affects the decay conditions dictated by (2.9) of Theorem 2.2. For the weight w(X) = I the

condition

IEI(x)U(x) Z x< +3 (1 _ X)0 + 3 (3.48)

guarantees sufficient decay so that the asymptotic errors resulting from the quadrature can

be balanced by choosing h. and N. as specified in (3.14) and (3.15). The term U(x) denotes

that part of the true solution which is approximated by uh and is given by the formal change

of variables

u(x) = u(x) - B-m._,(x) - B-m._2 (X) - BN.+3(X) - B,.+4()

-u"(O)BM. 3 (X) - u.'(0)BM.4(X) (3.49)

-,,(1)BN.+,(x) - u'(1)BN.+2 (X).

The discrete system for (3.40) can then be formulated as follows. Let &-M..-3, G-M.-4,

aNJ.+, aN.+2 and f denote the (m. + 4) x 1 vectors containing the product of -L and

the approximations to the inner products (LBM.- 3 , Sp), (LBM._4, Sp), (LB-N.+, S),

(LBNU+ 2 , S,), and (7, Si,), respectively. Hence the p-th entries of the respective vectors are

)= (EIB"')(xp, )W(3)

(i = -Mx -3,-M,-4,N=+ 1,N,+2) and

(O) = jAW(XP,)

Furthermore, let A.. denote the (m,, + 4) x m., matrix which results from the expansion of

the inner product (Luh, Sr). For a(x),I t 0 1 2 3,4 as defined in (3.18) - (3.22), the matrix

A, is given by

Am = 1 I()D(va4 ) + 1 1(3)D(va3 ) + _I()D(v~a2 )M. V. h-2
1

+I(1)V(va) + I(o)D(vao).

Here I('),t = 0, 1,2,3,4 are (m. + 4) x m, matrices whose pi-th entry is given by odr) from

(3.1) - (3.5), and v is defined in (3.42).
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The discrete system for the determination of the unknown coefficients {ui} is given by

A.4i= f

where the (m. + 4) x (m. + 4) matrix A, is defined to be

A. = [a-M.-4 M Am M-3.+ :N.+21. (3.50)

Here il is defined to be the (m. + 4) x 1 vector

ii = [U-M.-4, U-M.3 1 M., " " , tN., UN.+1, tUN.+2 T  (3.51)

containing the unknowns.

It is noted that the matrices A. as defined in (3.17) and (3.50) differ only in the presence

of v in the diagonal multipliers and the addition of border vectors. Hence the method is easily

adapted when the boundary conditions are changed. Moreover, the exponential convergence

rate is maintained, thus preserving the accuracy of the method.

With parameter recover in mind, it is again worthwhile to use the alternative approach

to develop the discrete system which arises when EI(x) is replaced by the finite dimensional

term El,. as defined in (3.25). To simplify notation in the discussion which follows, let

Ns

EI.(x) E ckvE(x)Sk(x)
k=-M.

and

E(x) = cm.1bm.1(x) + CM.2bM.2(X) + cN,+lbN,+1(X) + CN.+2bN.+2(X)

so that El,. = Elh + EI. Note that EIh and EIc simply denote the sinc and algebraic

components of the approximate parameter.

Consider now the inner products found in the system (3.46). The expansion of (Luh, Sp)

proceeds exactly as before with EI(x) simply being replaced by EI,,,.(x) in the integral

(3.47). In the boundary inner products, (LB, Sp),i = -M.-4,...,-M.-1 and i = N, + 1,

N, + 4, expansion and integration bY parts yields

(LB,, Sp) = +J0 El(x)B"(x)(Spw)"(x)dx + BT}

+ j(EI, B )"(x)S,(x)w(x)dx.
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The weight w(x') = 1 (see (3.45)) is sufficient for guaranteeing that

BT = {(EIhB')'(Spw) - EIhB"(Spw)}(x)l= 0.

The resulting integrals are evaluated via Theorem 2.2 or, when possible, Theorem 2.1.

For the weight w(x) = 1 , the decay condition is

IEI(X)U(X)I _< X*+3(1 - X)0+3

where U and EI are defined in (3.49) and (3.27) (compare to (3.48)). Again, the asymptotic

errors are balanced by choosing h. and N. as specified in (3.14) and (3.15).

The matrix system corresponding to (3.40) may be formulated as follows. Let Vj), %i'),

and -c(, be defined as they were in (3.31), (3.32), and (3.30), respectively (with t = 0, 1,2

and j = 2,3,4). Note that in the definitions now, the index ranges are -M" < i < N2 ,

-M. - 2 < p < N. + 2, and -M. - 2 < k < N2 + 2, and the (n. + 4) x 1 coefficient vector

is now C" = [C-M.-2, -'' , CN.+ 2]T. Hence 4I), TY) and 1 (,) have the sizes (m. + 4) x m.,

m, x (m, + 4) and n, x 1, respectively.

Furthermore, let $" denote the (in, + 4) x m. matrix which is defined componentwise by
1

[I"]k = 1,(=)spW )"(Xk)
09(Xk)

and let Z = [C-M.,..., CN.] T . Finally, for i = -M 2 -4,. •.,-M 2 -I and i = N'+I1, N.+4,

let d denote the (m. + 4) x 1 vectors

di = [ 'D(vEB')Z + -D ((EIcB:'1))

Here f is simply the m, x 1 vector of ones.

With the unknown vector U' given by (3.51), the discrete system can be written as

where

A. = [9-M.-4 ia-N.-3 Am  i N.+" aN.+2] (3.52)

and

f= vD (Wf) I- - 4N-M.-2 - 7aN+3 - 6saN+4.
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The (m, + 4) x m, submatrix A,,, is given by

A = [.tc2 )(v-(,,) + 24tc3)(v#*(I)) + t(4)Vv ,

It should be noted that the coefficient matrix A. in (3.52) differs from that arising in

the fixed boundary problem, (3.29), only in the presence of v in the diagonal multipliers and

the addition of border vectors. This makes the method easily adaptable when changing the

boundary conditions. Furthermore, the matrices j(i), '", and i(t) can be expanded in terms

of fundamental matrices in a manner similar to that in (3.33) - (3.36), thus simplifying the

implementation of the method. Finally, the exponential convergence rate of the method is

maintained, thus preserving the method's accuracy.

With the techniques from this section, the implementation of the Sinc-Galerkin method

for problems with free and simple boundary conditions can be accomplished in a manner that

is completely analogous to that used for cantilever boundary conditions. Further details and

examples of the Sinc-Galerkin method for problems with free and simple boundary conditions

can be found in [8].

3.3. The Temporal Problem

The last ODE to be considered is the initial value problem

Pu(t) = ii(t)=f(t), o < t < oo (3.53)

U(O) = i,(o) = 0.

A Sinc-Galerkin method to approximate the solution of (3.53) can be developed in a manner

similar to that of the preceding boundary value problems. Define the set of basis functions

fs;}=-M, by

s;(t) = S(j, ht)o T(t)

where T : Dw --+ Ds is given in (2.2). The approximate solution u,(t) is then defined by

N,

Um,(t) = E ujS;(t), mt = M, + Nj + 1. (3.54)
:i=-Mt

The mi unknown coefficients {u3 } in (3.54) are determined by orthogonalizing the residual
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with respect to the set of sinc functions which leads to the analysis of

(f,S;) = (Pu, S;) (3.55)

= (i,s;)

for q = - -,", Nt. The weighted inner product for (3.55) is defined to be

(F, G) = j F(t)G(t)w°(t)dt,

and the weight is taken to be

W*tf)t

for reasons that are discussed in [4]. As before, integration by parts is used to transfer the

differentiation of u onto S'w*. To guarantee that boundary terms vanish, it is assumed that

lim - 0.

t-.o In(t)

The resulting integrals are then evaluated via the quadrature rules of Section 2. With respect

to (2.4), the condition lu(~ l_< It-, t E (0, 1)

I t- 6 I t E [1,o00)

guarantees the boundedness necessary to truncated the infinite quadrature rule. With -Y and

6 specified and Mg chosen, the parameter selections

7d
ht= M

and

Nt = fjMt+ 11 (3.56)

balance the asymptotic errors in (2.5) to at least O(e-(ird-y t ) .

In many time-dependent PDE's, it is reasonable to assume that the solution decays

exponentially at infinity; that is, the solution satisfies

Iu(t)VT jl _ k t E (0,1)

2 e-2 ' ,  tE [1,oo)
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or, more stringently,

lu(t)l < Kt'+e(3.57)

With this supposition, Lund [12] shows that the condition (3.56) can be replaced by

t ~UIn (2Mh,) + 11J. (3.58)

The selection Nt in (3.58) significantly reduces the size of the discrete system with no loss

of accuracy.

The discrete system for (3.53) can then be formulated as follows. Let (), 1 = 0, 2 denote

the mt x mt matrices whose qj-th entry is 8l ) from (3.1) and (3.3), and let V(t/) again be

the diagonal matrix with entries ?/(tM,), "', (N). With the usual definitions for iT and f

and the identity

11

the system for the determination of the unknown coefficients {ui} is given by

Atui = D((t)- )f (3.59)

where

At V_( 2  4 2(i) (3.60)

Further details concerning the derivation of the system (3.59) can be found in [4].

Note that nonzero initial conditions can be handled in a manner analogous to that used

for nonzero boundary conditions in the previous discussion. Rational initial basis functions

are used to incorporate the initial behavior and this known contribution is then taken to the

right-hand side of the resulting discrete system (see [8]). All other analysis is identical to

that for the problem (3.53).

4 Time-Dependent Problems

This section details the Sinc-Galerkin method applied to fourth-order time-dependent PDE's

with fixed and cantilever boundary conditions. Since the choice of basis, test functions, and

inner product are all straightforward extensions of those used to solve the ODE's in Section 3,
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the error analysis and system formulation follow directly from previously discussed results.

Once a discrete system has been formulated, various options exist for solving the associated

matrix equation. Two such algorithms are outlined and their relative merits for various

problems are discussed.

4.1. The Time-Dependent Problem: Fixed Boundary Conditions

Consider the time-dependent problem

£u(X,t) E -(xt) + (EI(x) - (x,t = f~xt), 0 < x < 1 t > 0

U(0, t)= U(1,t) =0, t > 0

t( ot ) = ( 1, t )  0, 0 (4.1)

U(x, 0)= (X,0)=0, o<x<1.

Given the basis {S1j} where

S,,(x, t) - s,(x)s;(t) = S(i, h.) o O(x)S(j, ht)o T(t),

the approximate solution is defined by way of the tensor product expansion

N. Nt
u,,,.',(x, t) = E_ E uij i j(X)t), mn. = M. + N. + 1, mt = Mt + Ne + 1.

i=-M. j=-Mt

The m . mr unknown coefficients {uj,} are determined by orthogonalizing the residual with

respect to the set of sinc functions {Sp(x)S,(t)}r=_Mt,...N . . This yields the discrete Galerkin

system

(CUM.M, - f, Ss,;) = 0

for p = -Ms,..., N. and q = -Mr,'", Nt. The inner product (.,.) is taken to be

(F,G) = f f F(x,t)G(x,t)w(x,t)dxdt (4.2)

where

W(zt) = ,(X)W(t) = (0'(x))-(T(t))-I.

The quadrature rules and one-dimensional results from Sections 3.1 and 3.3 can be used to

determine the resulting matrix system.
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As before, equating asymptotic errors is fundamental to minimizing system size. When

the decay conditions (3.13) or (3.26), and (3.57) are combined to yield

IEI(x)u(x,t) Kxa'+(l -x)O+1tY+1e - 6t (4.3)

or

IFI(x)u(x, t)I < Kx"+1(1 - t1 + i e- ft , (4.4)

then the choices

h _ , (4.5)

ht h,, (4.6)
N. = [ ,+ I](4.7)

Me = + (4.8)

and

Nt=11 (2Mtht) 4- 11 (4.9)

for the stepsizes and summation limitp ' Plinrce the asymptotic errors. If one takes d = :1'

then the above choices yield an asymptotic error rate of order C(e-V-ff1).

Given M,, N,, M, Nj and h -h = he as defijied aoove, the discrete system for (4.1) is

A.UC + CUAT = G. (4.10)

Here

-r-w (4.11)

C.=v -(4.12)

and

The mt x me matrix At is given by

At= [-(2) - 1] E) (( )i) (4.13)
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as shown in (3.60). Furthermore, m. x mt matrices U and F are defined componentwise by

i= uj

and

[F]ij = f(x,tj).

It should be noted that the ordering of the coefficients uji in U mimics that used in most

standard time-differencing schemes. This is a matter of convenience since the Sinc-Galerkin

method is not bound by any specific ordering of the grid.

The structure of the m.,, x m, matrix A. depends on the scheme that is used to discretize

EI(x). If the parameter is fully differentiated, then A. is given by (3.17). If, on the other

hand, EI(z) is approximated by a linear combination of sinc and algebraic basis functions,

then A,, is given by (3.29).

Various methods exist for solving the equation (4.10). Referred to as a generalized

Sylvester equation (4.10) is algebraically equivalent (page 414 of [15]) to the system

Aul = {C, ® A. + At 9 C.} co(U) = co(G) (4.14)

where the tensor or Kronecker product of an m x m matrix E with a p x q matrix H is

defined by

E 0 H = [eijH],pxnq.

The vector U- = co(U) is the concatenation of the m. x me matrix U obtained by successively

"stacking" the columns of U, one upon another, to obtain an mmg x 1 vector.

The system (4.14) can be solved directly via any of the decomposition methods that are

available for linear systems. Although this system is easily formulated, the fact that A is

very large (m. mt x m., mt) and not banded causes this method to be impractical in some

problems. For more general fourth-order operators however, this may be the only method of

choice.

A second algorithm for solving (4.10) depends on the generalized Schur decomposition

(page 396 of [16]). As guaranteed by the results of Moler and Stewart [17], there exist unitary
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matrices Qi, Z1, Q2, and Z 2 such that

QIAZ 1 = P

Q1C.Zi = R

Q;CtZ2 = S

Q2AtZ 2 = T

where P, R, S, and T are upper triangular. If Y = Z[UZ2 and C = QGQ 2, then (4.10)

transforms to

PYT" + RYS" C.

By comparing the k-th columns, one finds that

n n

P E tkiyi + R E SkjYj = Ck
.,=k j=k

which yields
n n

(tkkP + skkR)yk = ck - P E tkjYj - R _j Sk, Y, (4.15)
j=k+l ! 3=k+1

(for convenience, it is assumed that all matrices are n x n and indexed from 1 to n). With

the assumption that the matrix (tkkP + SkkR) is nonsingular, the solution to (4.15) is easily

found by recursively solving triangular systems.

Although this algorithm does require complex algebra, it is both robust and efficient

and requires no assumptions concerning the diagonalizability of the component matrices.

It should be no ed that a "real" version of this algorithm also exists [18). In this latter

algorithm, Q1, Z1, Q2, and Z2 are orthogonal with P,S quasi-upper triangular and R,T

upper triangular.
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4.2. The Time-Dependent Problem: Cantilever Boundary Conditions

A generalization of the problem which arises when modeling beams with cantilever bound-

ary conditions is

u(x, t) = (X1t) + a EI(x)-.. (2(x t) = f(Xt), 0 < X <19( , t 2 X -- -ff (

u(O' t) = "u(t), EI- L92U (,1t 7t
\X2 / (4.16)au 1), E( a2U)(1, t)= W(t), t> 0

Ox O Ex i aX2)

U(X,) = -a (Xo) = o, o < X < 1.
t

The basis for this problem is taken to be {c(x)S;(t)} where Ci(x) is defined in (3.41) and

S;(t) = S(j, ht) o T(t). Here the approximate solution is taken to be

No Nt

um.m,(Xt) = E U,,,(X)S,(t)
i=-M. j=-M,

Nt

+ x: s(t) {_M.-3,j.M,.-3(X) + U-M.-4,,j-M.-4(X)
!=-Mt
+,N.+1,,CN.+1(X) + UN.+2.i(N.+2(X)}

+{d(t)M._l(X) + ¢_-M._2(X) + (t)CN.+3(X) + 6(t)CN.+4(X)}

where

i(7)t)I1)

and

and E(l)
()-El(1)-$t [EI(1l,() .

It should be noted that the approximate solution does satisfy the boundary conditions in

(4.16).

The (?r, + 4) . mt unknowns {uq,} are determined by orthogonalizing the residual with

respect to the sinc functions {Sp(x)S*(t) !_ ... ,. +2. This yields the discrete system

-M 2 - 2 <_p <N2 ±+

(Cum.., - f, SPS;) = 0,
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where (.,.) is defined in (4.2) with w(x,t) = (t(t))-I.

Appropriate integration by parts and the application of the one-dimensional results from

Sections 3.2 and 3.3 yields the matrix equation

AZUC T + C2 MUAT = G (4.17)

where Ct,C. and At are defined in (4.11), (4.12), and (4.13) respectively, and

The (m + 4) x m matrices U and F are defined componentwise by

and

f],ji = 7(x,, ti)

where

7( ,t) = f(x,t)- C(-&(t)B_._,(x))- C( (t)B-pf._2(X))

-£C( ()BN.+()) - L(I(t)BNo+4kX)).

The (rn + 4) x (m, + 4) matrix A, is given by (3.50) or (3.52) depending on which scheme

is used to discretize EI. Finally the (m + 4) x (m + 4) matrix M has the form

0

M= bL2 bL DM bRI bR2

o

where the n. x m. submatrix DM and the (m + 4) x 1 vectors are giver; by

DM = 1D(v),

b2 =1(B-m.-),

bLl = (Bm._3),

bRI = VD(BN.+I)f
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and

6R2 = D(BN.+ 2)1.

The system (4.17) can again be solved via the generalized Schur algorithm (4.15) as discussed

in Section 4.1.

Before implementing the method, the decay parameters 6, 0, -f and 6 must be determined

and summation limits chosen. For the spatial weight w(x) = 1, the decay conditions are

EI(x)U(x,t) < x ( -'e - 6t  (4.18)

or

IeI(X)U(Xt)l !5 Xa+ 3(1 - X)0+3ty+ e- 6' (4.19)

depending on the manner in which E1 was discretized. Here £I(x) is defined in (3.27) and

U(x, t) denotes that part of the true solution which is approximated by

No Ne

Uh(X, t) ui(X)S;*(t)
i=-M. j=-Mt

(see also (3.49)). With the decay parameters specified and M. chosen, the remaining stepsizes

and summation limits are given by (4.5) - (4.9).

5 Numerical Examples

The four examples reported in this section were selected from a large collection of problems

to which the Sinc-Galerkin method was applied. The results are representative of those

obtained on other sample problems. For purposes of comparison, contrast, and performance

evaluation, examples with known solutions were chosen. The first and last examples have

analytic solutions, the second example has an algebraic singularity, and the third example

contains a logarithmic singularity. As will be demonstrated by the numerical results, the

boundary singularities have no adverse affect on the performance of the method.
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In all examples d = . The errors are reported on both the set of sinc gridpoints

S {=-M,,..,N i eih"S tj)Ys=-M,, ... ,N ; i +-1 e
i h

e t e j h

and the set of uniform gridpoints (t = it = 1

= {(zr, s) ...'; z='sp, s= =C tq.

The errors on these grids are reported as

IE(hh) l = m I lu(xi,t,) - u,.m,(xi,t3)I
-Mtj<_RNe

and
IIEf-(tM.)Il-- ma tu(zp, s)- u,..,(zp,sq)I,

O<q<60

respectively. The dependence of both errors on the number of sinc basis functions is indicated

with the superscript M.,. It is noted that if exponential convergence is realized, then

(llEM-(I ,I,)Jl)' /"M- ;: jjEf tV)

where M. and ft, denote the lower limits for the spatial sums. In the examples of this section,

M,,, = 2M., and the exponential convergence is verified by comparing (E '/2(I., tt)) 1'i and
IEft-(I.,t,)l

The error and convergence results are tabulated in the form .aaa - 'Y which represents

.aaa x 10- Y. All problems were run with sixteen place accuracy on a Vax 8550.

Example 5.1.

t) + xEI(x) -9 ,t)) = Axt), 0 < x < 1 t > 0

u(0,t) = U(1, t) = 0, t > 0
eOu a)= u

Ouu(,0)=-(,o) =0, o0< x_1

The flexural rigidity is EI(x) = 1 + sin(7rx) and f(x, t) is consistent with the true solution

u(x, t) = x(1 - x) sin(41r )t2e- '. The parameter is expanded via (3.25) thus yielding the
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spatial representation (3.29). The decay condition (4.4) dictates the parameter choices a =

y= 7 = and 6 = 1. The asymptotic error rate C(e-"O)is maintained as indicated

by the last column of Table 1. Notice that the choice of Nj given in (4.9) significantly

reduces the size of the matrices involved in (4.10). The errors on both the sinc grid and

the uniform grid do not differ dramatically though in the next example the difference will

be more noticeable. Figure 3 shows the true solution u(x, t) while Figure 4 shows both the

true and approximate solutions (for M, = 8,16) at the time slice t = 2. The approximate

solution for M. = 32 is buried in the true solution on this scale.

M. N., Mt Art IlE"-Ch.,h,)ll IIEUM'(I.t=,,l (EvM a (t ., ,)ll)v

4 4 4 2 .6207-0 .8040-0

8 8 8 4 .6890-1 .8448 -1 .7345-0

16 16 16 6 .2910-3 .1105-2 .3035-1

32 32 32 9 .1906-4 .2151-4 .6587-4

Table 1. Errors on the Sinc Grid S and the Uniform Grid U for Example 5.1.
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in j

Figure 3. True Solution to Example 5.1.
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Figure 4. True and Approximate Solutions to Example 5.1 at Time t 2

- - - (M. = 8), -.- (M. = 16), - (True).
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Ezample 5.2.
19'u MU 0
- -( + iz,t) =f(x,t), O< < 1 t>O

u(O,t) =u(1,t) = 0, t > 0

'Ou OuTX(0, 0 X(1, t) = 0, t > 0

auU(,0) = -(x,0)= 0, o< x<1

The function f(x,t) is consistent with the solution u(x,t) = [rX(1 - X)]7/2t/ 2e-I which has

algebraic singularities at x = 0, x = 1 and t 0. The spatial discretization is taken to be

(3.17) with the decay parameters a = P = -y 2,5 = 1 dictated by (4.3). As indicated by

Table 2, the asymptotic error rate O(e - w" v 7 ) is achieved in spite of the boundary singu-

larities. The increased accuracy of the method for this problem as compared to Example

5.1 is due to the larger values of a,/0 and -y. Here the error on the sinc grid is substantially

smaller than that on the uniform grid. This emphasizes that one should use caution when

assessing performance of a method based on only the errors at the gridpoints of the method.

The true solution is plotted in Figure 5 while time slices (at time t = 2) of both the true

and approximate solutions (for M, = 4,8) are plotted in Figure 6.

M. N. M't Nt IIE.'(h,h,)l IIlE '(I.,tt)j (llEj'/(I.,It)1)"

4 4 4 3 .2040-4 .3184-3

8 8 8 4 .9361 -5 .3618-4 .1134-4

16 16 16 7 .1372-6 .1788-5 .5233-6

32 32 32 11 .1742-9 .1338-7 .7441-8

Table 2. Errors on the Sinc Grid S and the Uniform Grid U for Example 5.2.
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,,(r, t)

Figure 5. True Solution '.o Example 5.2.
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Figure 6. True and Approximate Solutions to Example 5.2 at Time t = 2

-- (M.= 4), -. (M.=--8), - (True).
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Example 5.3. 02u" t) u

-t ( , -4 (z, t)= f(X,t), 0 < X< 1 t > 0

U(0,0)=0, au (1,t) = 2t 2 e- , t > 0
Ou 0 t0u"au(0 )=0, -(1, t) =0, t>0

u(X,0)=(x, ) =o, 0<x<1.

The true solution u(x, t) = [(xln(x)) 4 + x 2 t 2e- t dictates the forcing function f(x, t). The

decay condition (4.18) with EI(x) = 1 yields the parameter choices a = -y = y = a'21

and 6 = 1 which in turn implies the asymptotic error rate O(e-'V/-12). As indicated by

the results in Table 3 this rate is achieved in spite of the logarithmic singularity at x = 0.

The convergence of the method is even accelerated which can be seen by in the last column

of Table 3. The mesh plot in Figure 7 shows the distinctive behavior that the solution can

exhibit when cantilever boundary conditions are in force. The "oscillation" at the right-hand

end is tracked accurately by this method. The time slice at t = 2 shown in Figure 8 shows

the approximate (M. = 4, 8,16) as well as the true solution.

M N. Me Nt IIEs'(h, h .)II -E( )-(I ' 2 (I,,,)l)v'

4 4 3 2 .4227 -1 .9083 - 1

8 8 6 3 .8034-2 .1999 - 1 .3363- 1

16 16 11 4 .8799-3 .1838-2 .3953-2

32 32 22 7 .3947-4 .8741-4 .1353-2

Table 3. Errors on the Sinc Grid S and the Uniform Grid U for Example 5.3.
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Figure 7. True Solution to Example 5.3.
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Figure 8. True and Approximate Solutions to Example 5.3 at Time t = 2

(M = 4), -.- (M. = 8), .. (M, = 16), -(True).
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Example 5.4.

- 2uI(t) + 0Xu -EI(x)-aX (x,t ) = f(x~t), O < x < 1 t > O

a u(,t) = Ox =l-2x 2
Ou ) 2)(1, t) = 8r 3 t 2 e t > 0

ux u 0) 0, -0 < <U(a:,o) = =t()

This example illustrates a problem where the spatial discretization (3.52) is useful. Here

the flexural rigidity is EI(x) 1 + sin(7rx) and the forcing function f(x, t) is consistent

with the true solution u(x,t) = (sin 3(wx) + xlt 2e- . The parameter EI(x) is expanded via

(3.25) thus yielding the spatial representation (3.52). The parameter choices a = / = 1,

-' and 6 = 1 follow from (4.19). As demonstrated by the last column of Table 4, the

asymptotic error rate O(e-'VM ) is achieved for larger values of M., N , Mt, and Nt. On

this example the errors on the sinc grid and those on the uniform grid are nearly the same.

The smaller parameters a and a indicate why the errors here are larger than in the previous

three examples. A mesh plot of the true solution is shown in Figure 9 while a time slice

(t = 2) of both the true and approximate solutions (M. = 8,16) are plotted in Figure 10.

M. N. Mt Nt IIEM-(h.,ht)ll JjEM'(t:.,tt)j (IJEM/(t,)[) /

8 8 6 3 .6889- 1 .6958 - 1

16 16 11 4 .2958-1 .3165-1 .2307-1

32 32 22 7 .4346-3 .4885-3 .7572-2

Table 4. Errors on the Sinc Grid S and the Uniform Grid U for Example 5.4.
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Figure 9. True Solution to Example 5.4.
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Figure 10. True and Approximate Solutions to Example 5.4 at Time t 2

-- - (M = 8,)-.- (M. = 16), - (True).
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6 Conclusions

A fully Sinc-Galerkin method in both space and time is presented for fourth-order time-

dependent problems with fixed and cantilever boundary conditions. The sinc basis properties

which facilitate the simple assembly of the discrete system are discussed in Section 2. In

Section 3, the sinc discretizations for the second-order temporal problem and the fourth-order

spatial problems are presented. Alternate formulations for the variable parameter fourth-

order problems are given which prove to be especially useful when applying the forward

techniques of this paper to parameter recovery problems. The ODE results are then combined

in Section 4 to form the discrete systems corresponding to the time-dependent problems of

interest. Computational issues are discussed and a robust and efficient algorithm for solving

the resulting matrix system is outlined. Numerical examples which highlight the method are

given in Section 5. As demonstrated by the numerical results, the exponential convergence

rate of the method is maintained for problems with both analytic and singular solutions as

well as fixed and cantilever boundary conditions.
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